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Statistical properties of a photon gas in random media
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This paper is devoted to a derivation of the probability distribution of photon escape from a semi-infinite
random medium, depending on the number of its interactions with macroscopic particles inside the medium.
The consideration is limited to the case of highly developed multiple light scattering. The distribution function
found facilitates the solution of both direct and inverse problems in light scattering media optics.
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I. INTRODUCTION

Statistical characteristics of a photon gas in random me
is an important subject which has a number of applicati
@1–3#. We address the following question. We have a c
stant infinitely broad monochromatic photon flux incident
the direction specified by the unit vectormW 0 (q0 ,w0) on the
surface of a semi-infinite plane-parallel random isotropic m
dium. Hereq0 is the zenith angle andw0 is the azimuth
angle of the incident light beam. It is assumed also that
energy of the photons is far from the absorption bands
substances contained in the random medium. We cons
the angular distributionN0(mW ,mW 0) of photons emerging in
the direction specified by the unit vectormW (q,w) from an
arbitrary pointS on the surface of a layer. Hereq is the
zenith angle andw is the azimuth angle of the emerging lig
beam. Clearly, due to the symmetry of the problem this d
tribution does not depend on the choice ofSon the surface of
a random isotropic medium. Also we have for normal ill
minationmW 0•xW50, xWPL, whereL is the plane containing the
medium surface andxW is an arbitrary unit vector in the plan
L.

The functionN0(mW ,mW 0) can be obtained by solving Am
bartsumian’s nonlinear integral equation@4,5#. We are inter-
ested, however, in the representation ofN0(mW ,mW 0) as a sum
of contributionsp(mW ,mW 0 ,n) due to photons scatteredn times
in the medium@1–3#:

N0~mW ,mW 0!5 (
n51

`

p~mW ,mW 0,n!. ~1!

Photons scattered different numbers of times, of cou
will have different path lengths in the scattering mediu
The value ofp(mW ,mW 0 ,n), which is often called the photon
weight, can be considered also in the framework of the Fe
man path integral approach@6,7#. This approach, being ver
general, can be applied to any type of scattering medium.
will use here, however, the essential features of the med
under consideration, namely, its infinite extension in
space below the planeL and the absence of photon absor
tion. These assumptions allow us to avoid path integral
culations. Clearly, the average number of scattering even
such an artificial medium is infinite as well. The prima
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goal of this paper, therefore, is to derive the analytical r
resentation for the weightsp(mW ,mW 0 ,n).

II. THE PROBABILITY DISTRIBUTION FUNCTION

Let us introduce the probabilities

f ~n!5
p~mW ,mW 0,n!

(
n51

`

p~mW ,mW 0,n!

~2!

with the normalization condition

(
n51

`

f ~n!51. ~3!

The value off (n) can be interpreted as the probability fo
photons injected in the medium in the directionmW 0 and scat-
tered n times to emerge in the direction specified by t
vectormW . The condition~3! states that the total probability o
photon escape is equal to 1. This is due to the assu
absence of absorption.

To derive the functionf (n) we will use the random walk
theory@8#. This theory states that the probability of a partic
appearing at a given place, time, and direction after a la
numbern of interactions is given by

f ~n!5Aa/pn23/2exp~2a/n!, ~4!

where the constanta depends on the physical process und
study. The only problem left is, therefore, to find the const
a for our particular case. Clearly, it does not depend on
position of the pointS on the surface of the medium. It als
does not depend on time because we consider the st
case. So the only dependence left is due to local opt
characteristics of the random medium and the vectorsmW ,mW 0 .

To derive the parametera, we consider now the case of a
absorbing medium with the same scattering law in a sin
scattering event as for the nonabsorbing semi-infinite rand
medium in question.

The probability of photon survivalv0 in a single scatter-
ing event differs from 1 for absorbing media. Then we ha
instead of Eq.~1! @9,10#
©2002 The American Physical Society01-1
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N~mW ,m0W !5 (
n51

`

p~mW ,mW 0,n!v0
n . ~5!

Clearly, it follows thatN[N0 at v051. We can also use th
distribution functionf (n). Then we have forj[N/N0

j5 (
n51

`

f ~n!v0
n , ~6!

where for the sake of simplicity we omitted the indicatio
of the dependencies ofj and f on mW , mW 0 . We will consider
now a random turbid medium withv0'1.

First of all we note that the expansion~6! is only slowly
convergent forv0'1. So we will use an expansion in th
parameterb512v0 , which is the probability of photon ab
sorption, instead of the expansion inv0 in Eq. ~6!. Then we
have from Eq.~6!

j5 (
n51

`

f ~n!~12b!n ~7!

or

j5 (
n51

`

f ~n!S 12bn1
b2n~n21!

2

2
b3n~n21!~n22!

6
1¯ D , ~8!

where we used the expansion

~12b!n5(
j 50

n

~21! j S n
j Db j ~9!

with (n/ j )[n!/ j !(n2 j )!.
It follows from Eq. ~8! that approximately

j'12bn̄1
b2n2

2
2

b3n3

6
1¯'exp~2bn!, ~10!

where

nk5 (
n51

`

f ~n!nk, k51, . . . ,̀ ,

exp~2bn!5 (
n51

`

f ~n!exp~2bn!. ~11!

Note that we have assumed thatn(n21)'n2,
n(n21)(n22)'n3,... in thederivation of Eq.~10!. This is
possible due to the large number of scattering eventsn. For
the same reason we have

exp~2bn!5E
0

`

f ~n!exp~2bn!dn, ~12!

where@see Eq.~3!#
03760
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0

`

f ~n!dn51. ~13!

The integral~12! can be evaluated analytically. The answer

exp~2bn!5exp~22Aab!, ~14!

where we used Eq.~4!. Thus we have, taking into accoun
Eq. ~10!,

N~mW ,mW 0!5N0~mW ,mW 0!exp~22Aab! ~15!

or, asb→0,

N~mW ,mW 0!5N0~mW ,mW 0!~122Aab!. ~16!

Now we have an opportunity to find the value ofa, com-
paring Eq.~16! with the exact solution of the radiative tran
fer equation at smallb @3#:

N~mW ,mW 0!5N0~mW ,mW 0!@12yu~mW ,mW 0!#, ~17!

wherey54Ab/3(12g) andg5 1
2 *0

pp(u)sinu cosu du is the
asymmetry parameter@3#, p(u) is the probability of a photon
scattering in the direction specified by the scattering anglu,
and

u~mW ,mW 0![ @K0~m!K0~m0!#/@R0~m,m0 ,c!# , ~18!

where@1#

K0~m!5
3

2 E0

1

R`
0 ~m,m0!~m1m0!dm0 ~19!

is the escape function and

R`
0 ~m,m0!5

1

2p E
0

2p

R`
0 ~m,m0 ,c!dc ~20!

is the azimuthally averaged reflection functionR`
0 (m,m0 ,c)

@3#. Here m5cosq, m05cosq0, c5w2w0 . Clearly we
havem05A12(mW 0•xW )2, m5A12(mW •xW )2.

It follows from Eqs.~16! and ~17! that

a5~4u2!/@3~12g!#, ~21!

which is the result we tried to establish from the very beg
ning. Finally, we have from Eqs.~4! and ~21!

f ~n!5
2u exp@24u2/3n~12g!#

n3/2A3p~12g!
, ~22!

whereu is given by Eq.~21!. We note here the importance o
the viewing functionu, which combines all angular depen
dencies.

Our Eq. ~22! transforms to the similar equations derive
in @9,10# if one uses the expansion of the exponent in
power series in the value ofn21. Only the first term of such
an expansion was explicitly derived in@9,10#.

It follows from Eq. ~22! that f 8(n)50 at n5nmax52a/3
and
1-2
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f max[ f ~nmax!5
1

aAp
S 3

2D 3/2

expS 2
3

2D , ~23!

wherea is given by Eq.~21!. We also have@see Eq.~21!#

nmax5~8u2!/@9~12g!#. ~24!

We see thatnmax increases withg and f max is linearly pro-
portional to 12g.

Finally, it follows from Eqs.~2! and ~22!

p~m,m0 ,n!

5
2K0~m!K0~m0!exp@24u2~m,m0 ,c!/3n~12g!#

n3/2A3p~12g!
,

~25!

where we used the normalization conditionN0(mW ,mW 0)
5R0(m,m0 ,c). The functionK0(m) can be approximated
by @11,12# the expressionK0(m)5 3

7 (112m) for arbitrary
random media with discrete particles. The accuracy of
formula is better than 2% atm.0.2 @11,12#. Simple approxi-
mations forR0(m,m0 ,c) are derived in@1,5,11,12#.

We present results of calculations with Eq.~22! at u51 in
Fig. 1. It follows that the maximum of the probabilityf
increases linearly with increasing 12g, which is in corre-
spondence with Eq.~23!. Clearly, we obtain thatf [0 at g
[1. This means that photons do not have a chance to es
from the medium. They only propagate along straight lin
~no scattering!.

The maximum shifts to larger numbers of scatteringsn for
larger values ofg, which is in correspondence with Eq.~24!.
The influence of the parameters5u22 on the curvesf (n) is
similar to that of the parameter 12g. The value ofnmax only
slowly changes withg at g,0.7. However, it increases rap
idly at g.0.9.

FIG. 1. The dependencef (n) for various values ofg at u51.
03760
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III. APPLICATIONS

The main result, given by Eq.~22!, can be generalized to
other situations and measurement setups. For instance, i
is interested in functionsf̄ (n) for total photon numbers, in-
tegrated over the escape angle, it is possible to obtain ins
of Eq. ~22!, following the same line of reasoning,

f̄ ~n!5
2K0~m0!exp@24K0

2~m0!/3n~12g!#

n3/2A3p~12g!
. ~26!

Using similar arguments we obtain for the case of in
gration on both the incident and escaped photon directio

f̃ ~n!5
2 exp@24/3n~12g!#

n3/2A3p~12g!
. ~27!

This corresponds to the case of diffuse illumination and d
fuse reflectance measurements. Clearly, we have for the
fuse reflection coefficientr (q0)

r ~q0!5 (
n50

`

f̄ ~n!v0
n , ~28!

which gives us after transfer to the continuous basis

r ~q0!5E
0

`

f̄ ~n!v0
ndn. ~29!

This formula can also be presented in the following form

r ~q0!5E
0

`

f̄ ~n!exp~pn!dn, ~30!

where p5 ln(1/v0)'12v05b as v0→1. It follows from
Eqs.~30! and ~26! that

r ~q0!5exp@2yK0~m0!#, ~31!

wherey54A@ ln(1/v0)#/3(12g). Also, we have for the tota
reflectivity

r 5 (
n50

`

f̃ ~n!v0
n ~32!

or, following the same steps as in the derivation of Eq.~31!,
r 5exp(2y). All cases considered here correspond to we
absorption and, therefore, we can use the limiting value oy
for v0 close to 1: y54A(12v0)/3(12g). The expres-
sions for r (q0) and r derived here have been known for
long time@11#. They were obtained, however, using a diffe
ent approach. Our derivations allow us to make clearer th
physical basis.

Also, using Eqs.~22! and ~6! we conclude that

j[
R`

R`
0 5exp~2uy!. ~33!

This formula is also the well known result of radiative tran
fer theory@11,12#. We see that the derived function~22! ap-
1-3
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pears to be a key point for the derivation of many import
relations in scattering media optics in a simple and straig
forward manner.

It can also be used to establish the temporal statistic
photons emerging from a random light scattering layer.
instance, accounting for the fact thatn5vt/L, where t is
time needed for a photon travel the distancenL with the
group speedv, we may obtain from Eq.~22! the distribution
of photons according to arrival timest or pathsnL. HereL
5s21, wheres is the extinction coefficient of the random
medium. The value ofL is called the photon free path lengt
Taking this into account, we obtain from Eq.~22!

f ~ t !52uS L

v D 3/2 t23/2

A3p~12g!
expS 2

4Lu2

3~12g!vt D . ~34!

Clearly the functionsf̄ (n) and f̃ (n) transform to

f̄ ~ t !52K0~m0!S L

v D 3/2 t23/2

A3p~12g!
expS 2

4LK0
2~m0!

3~12g!vt D
~35!

and

f̃ ~ t !52S L

v D 3/2 t23/2

A3p~12g!
expS 2

4L

3~12g!vt D . ~36!

For instance, we have from Eq.~35! at normal incidence

f̄ ~ t !5A@B/p~12g!#S L

vt D
3/2

expS 2
BL

~12g!vt D , ~37!

where

B5 4
3 K0

2~1!. ~38!

The value ofB is approximately equal to 2.2. Equatio
~37! has been derived earlier@7,13#. However, the value ofB
in @13# is equal to 0.75. We believe thatB, given in Eq.~38!,
is closer to the exact result. Note that the value ofB is equal
to 2.19 in@7#, which is close to the result given by Eq.~38!.

The distribution on path lengths is obtained by subst
tion of t in Eqs.~34!–~36! by s/v, wheres5nL is the total
distance traveled by a photon aftern scatterings.
s

e

-

h
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The probability distribution functionf (n) can be used
also to find the statistical moments

nk5E
0

`

nkf ~n!v0
ndn. ~39!

It can be done analytically; namely, we have

nk5~21!k21Aa
]k21

]pk21 S exp~22Aap!

Ap
D , ~40!

wherea is given by Eq.~21! andp5 ln(1/v0). In particular,
we have

n̄5Aa/p exp~22Aap!. ~41!

Thus, one can obtain for the average number of scatter
involved in forming the observed absorption line@14#

^N&5S E
0

`

n f~n!v0
ndnD Y S E

0

`

f ~n!v0
ndnD ~42!

the following simple relation:

^N&5~2u! /g, ~43!

whereg5A3(12g)(12v0) is the diffusion exponent of ra
diative transfer theory@3#. The average distance traveled by
photon havinĝN& scatterings is given byl 5^N&L. This dis-
tance varies with the observation geometry due to the p
ence of the viewing functionu in Eq. ~43!. Thus, we con-
clude that the strength of the absorption line in the scatte
atmosphere will also depend on the viewing geometry.

IV. CONCLUSION

In conclusion, we derived here the probability distributio
function ~22!. It describes the photon migration from th
directionmW 0 to the directionmW aftern interactions with scat-
terers. This function might be of importance for a wide ran
of applications. Some of them are outlined above. Intere
ingly enough, the geometry of the observation enters
~22! as a single numberu. This gives significance to the
function u, given by Eq.~18!, for radiative transfer theory.
m
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